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DeiT (Data-efficient Image Transformers)

[Facebook Al]
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Abstract

Recently, neural networks purely based on attention were shown to address image classification.
These high performing vision transformers are pre-trained with hundreds of millions of images using a large
infrastructure, thereby limiting their adoption.

This work produces competitive convolution-free transformers by training on Imagenet only.

Train them on a single computer in less than 3 days.

Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with
no external data.

Introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student
learns from the teacher through attention.

We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report
results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other
tasks.
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DeiT (Data-efficient Image Transformers)

* ViT : Pre-trained with 100M images (large infrastructure) - limiting their adoption.
» Excellent results trained with JFT-300M, 300M images
» They concluded that transformers “do not generalize well when trained on insufficient amounts of data”.

* DeiT : Training on Imagenet only, Single node with 4GPU in 3 days
» 86M parameters : top-1 accuracy 83.1% (single-crop) on ImageNet without external data
» Teacher-student strategy : a distillation token ensuring that the student learns from the teach through

attention
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q Figure 1: Throughput and accuracy on Imagenet of
K our methods compared to EfficientNets, trained on
Imagenet1k only. The throughput is measured as
the number of images processed per second on
B1, a V100 GPU. DeiT-B is identical to VIT-B, but the
: training is more adapted to a data-starving regime.
It is learned in a few days on one machine. The
symbol ™ refers to models trained with our
transformer-specific distillation. See Table 5 for
details and more models.
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DeiT (Data-efficient Image Transformers)

Related Works : Transformer Architecture

Transformer

* Introduce by Vaswani et al. (Attention is All you need, 2017) for machine translation

» Currently the reference model for all NLP tasks

* Many improvements of convnets for image classification are inspired by transformers. Ex) Squeeze & Excitation, Selective Kernel, Split-
attention networks exploit mechanism akin to transformers self-attention (SA) mechanism.
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Related Works : Knowledge Distillation (KD)

* Introduce Hinton et al. (“Distilling the Knowledge in a neural network”, By Wei et al.[54] (“Circumventing Outliers of AutoAugment with

2015) Knowledge Distillation”, 2020)

v KD refers to the training paradigm in which a student model « The teacher's supervision takes into account the effects of the data
leverages “soft"” labels coming from a strong teacher network — augmentation, which sometimes causes a misalignment between
This is the output vector of teacher's softmax function, rather the real label and the image.

than just the maximum of scores, which give "hard” labels

random crop & resize
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Big & Deep : Pretrained

E”a“f” * Abnar et al. (Transferring Inductive Biases through Knowledge

dent Classifie : Distillation, 2020)
mage I (e SR

logit Class probability . KD_ can transfer inductive biases in a soft way in a studen’.t model
using a teacher model where they would be incorporated in a hard
way. — Useful to induce biases due to convolutions in a
transformer model by using a convolutional model as a teacher.

Small & Swallow
To be trained T

[EX] slideshare, Wonpyo Park, "Relational knowledge distillation"

[EX] PR12 Paper Review, Jinwon Lee, PR-297 DeiT
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Related Works : Knowledge Distillation (KD)
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DeiT (Data-efficient Image Transformers)

Vision Transformer - Same Architecture as ViT

Multi-head Self-Attention Layers (MSA)

Multi-head Self Attention layers (MSA). The attention mechanism is based Scaled Dot-Product 4

on a trainable associative memory with (key, value) vector pairs. A query vector ] Atterion

g € R? is matched against a set of k key vectors (packed together into a matrix ct— o

K € Rkxd) using inner products. These inner products are then scaled and Linear PJ{ Linear LJ{ Linear P PxP : 16x16

normalized with a softmax function to obtain i weights. The output of the N 224/16 x 324/ 16 =14x14
attention is the weighted sum of a set of k value vectors (packed into V' € RF*9), E ;63(1_632 = 768

For a sequence of \ query vectors (packed into Q € RN>d) it produces an v K Q e

output matrix (of size \' x d):
Transformer block for images
Attention(Q. K, V) = Softmax(QK ' /Vd)V, (1)

where the Softmax function is applied over each row of the input matrix and * We add a Feed-Forward Network (FFN) on top of MSA layer.
the v/d term provides appropriate normalization.

Linear layer (4D — D)
In [52], a Self-attention layer is proposed. Query, key and values matrices 1
are themselves computed from a sequence of N input vectors (packed into GeLu activation
X e RNXD): Q =XWg,, K = XW, V= XTIy, using linear transformations L)
Wq, Wk, Wy with the constraint £ = N, meaning that the attention is in be- Linear layer (D — 4D) D : 16x16x3 = 768
tween all the input vectors.

Finally, Multi-head self-attention layer (MSA) is defined by considering / at-
tention “heads”, ie h self-attention functions applied to the input. Each head + Both MSA and FFN are operating as residual operation (thanks to

provides a sequence of size N x d. These h sequences are rearranged into a skip-connection), and with a layer normalization.
N x dh sequence that is reprojected by a linear layer into N x ).
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DeiT (Data-efficient Image Transformers)

Vision Transformer - Same Architecture as ViT

Class token

Trainable vector, appended to the
patch token before the first layer,
— goes through the transformer
layer — projected with a linear
layer to predict the class.

Transformer process batches of
(N + 1) tokens of dimension D, of
which only the class token is used
to predict the output.

Forces the self-attention to spread
information between the patch
tokens and the class token.

At training time, the supervision
signal comes only from the class
embedding, while the patch
tokens are the model's only
variable output.

'CCE Etean:her
0 {
{@Dmmqgmmm@}

FFN
self-attention

i)
(oeOOoOoOoOooode}
titttr ottt

class patch distillation
token tokens token

Hugo Touvron, et al. "Training data-efficient image transformers & distillation
through attention," arXiv 2021

Fixing the positional encoding across resolution

Tourvron et al. (Fixefficientnet, 2020) show that it is desirable to use
a lower training resolution and fine-tune the network the larger
resolution

v' Speed up the full training and improves the accuracy under
prevailing data augmentation schemes.

When increasing the resolution of an input image, patch size does
not change, therefore the number of input patches(N) does change.
One need to adapt the positional embeddings.

Dosovitaskiy et al. [15] (ViT) interpolate the positional encoding
when changing the resolution. — Work with the subsequent fine-
tuning stage.
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DeiT (Data-efficient Image Transformers)

Distillation through Attention KLG) <é>¢<ﬁ>)
T

T
hard decision

* Assume that a strong image classifier as a eacher Classifie ﬁ% @ Yy = argmax,Z,(c)
teacher model

P Z :
- Hard distillation vs Soft distillation, 2 - w( ) I
- Classical distillation vs Distillation token p— G ﬁ softma ﬁ ground true label 7y
_S ¢(i Zsy Class probability LeW(ZY),y)
T
1) Soft distillation 2) Hard distillation
* Minimizes the Kullback-Leiber divergence between the teacher's + Take the hard decision of the teacher (y, = argmax.Z,(c)) as a true
softmax and the student's softmax. label - N
* Distillation objective \ « Hard-label distillation based objective \
Py, 5 Z 1 1 v
Lgiobal = (1 = DL P(Z), ) + AT? KL \ 5 Y { t\) Lgﬁ)rgamsml Zﬁth(ll’(z ), ¥) + 5 L(,h(l.b(z ) Yi)
v Z,, Z, : the logits of teacher and student models v" For a given image, the hard label associated with the teacher

may change depending on the specific data augmentation.

v' 1 : the temperature for the distillation

. . . v icti
v 1: the coefficient balancing the KL divergence loss (KL()) and The teacher prediction y, plays the same role as the true label y.

the cross-entropy (Lc;) on ground truth labels y « The hard-label can be converted into soft labels with label

v 1 : softmax ft. smoothing, where the true label is considered to have a probability
1 — € (e=0.1) and the remaining ¢ is shared across the remaining
classes. 81



DeiT (Data-efficient Image Transformers)

Distillation through Attention

3) Distillation token

Add a new distillation token to class token/patch tokens.

It interacts with the class and patch tokens through the self-
attention layers.

This distillation token is employed in a similar fashion as the class
token, except that on output of the network, its objective is to
reproduce the (hard) label predicted by the teacher, instead of
true label. (The target objective is given by the distillation
component of the loss.)

Distillation embedding allows the model to learn from the output of
the teacher, while remaining complementary to the class
embedding.

Both the class and distillation tokens input to the transformers
are learned by back-propagation.

The learned class/distillation tokens converge towards different
vectors; the average cosine similarity between two tokens equal to
0.06. — at the last layer, their similarity equal to 0.93.

3 A,‘ X B,‘
AB &

“AlBl T = -
\/_z (A x o3 (B2

similarity = cos(6)

Hugo Touvron, et al. "Training data-efficient image transformers & distillation
through attention," arXiv 2021
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Our distillation procedure:
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DeiT (Data-efficient Image Transformers)

Distillation through Attention
4) Fine-tuning with distillation
* Use both the true label and teacher prediction during the fine-

tuning stage at higher resolution.

* Use a teacher with the same target resolution, typically
obtained from the lower-resolution teacher.

5) Classification with our approach: Joint classifier

+ Attest time, both the class and distillation embeddings (produced
by transformer) are associated with linear classifiers and able to
infer the image label.

* Ourreferent method is the late fusion of these two separate heads,
for which we add the softmax output by two classifiers to make the
prediction.
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DeiT (Data-efficient Image Transformers)

Experiments

Transformer Models

* Architecture is identical to ViT with no convolution (ViT-B = DeiT-B)
* Only differences : Training strategy and Distillation token

* DeiT-B : Reference model (Same as ViT-B) — Parameters are
fixed as D=768, h=12, d=D/h=64 (Keeping d=64)

* DeiT-B1384 : Fine-tune DeiT at a larger resolution
* DeiT7 : DeiT with distillation (using distillation token)
* DeiT-S (Small), DeiT-Ti (Tiny) : Smaller models of DeiT

Model | ViT model embedding #heads #layers #params training  throughput
dimension resolution  (im/sec)
DeiT-Ti N/A 192 3 12 5M 224 2536
Deil-5 N/A 384 6 12 22M 224 940
DeiT-B ViT-B 768 12 12 86M 224 292

Table 1: Variants of our DeiT architecture. The larger model, Deil-B, has the
same architecture as the ViT-B [15]. The only parameters that vary across mod-
els are the embedding dimension and the number of heads, and we keep the
dimension per head constant (equal to 64). Smaller models have a lower pa-
rameter count, and a faster throughput. The throughput is measured for im-
ages at resolution 224 x224.

Hugo Touvron, et al. "Training data-efficient image transformers & distillation
through attention," arXiv 2021

[EX] PR12 Paper Review, Jinwon Lee, PR-297 DeiT

Distillation : Convnets teachers

* Using a convnet teacher gives better performance than using a
transformer

* Due to the inductive bias inherited by the transformer through
distillation

Teacher Student: DeiT-B &
Models acc. | pretrain 1384
DeiT-B 8.8 819 831

RegNetY-4GF  80.0 82.7 83.6
RegNetY-8GF  81.7 82.7 83.8
RegNetY-12GF  82.4 83.1 84.1
RegNetY-16GF  82.9 83.1 84.2

Default teacher is a RegNetY-16CF (84M parameter)

https://paperswithcode.com/method/regnety
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DeiT (Data-efficient Image Transformers)

Experiments

Distillation : distillation methods
» Hard distillation significantly outperforms soft distillation for
transformers, even when using only a class token.

* The classifier on the two tokens is significantly better than the
independent class and distillation classifiers

« The distillation token gives slightly better results than the class
token. It is more correlated to the convnets prediction.

Hugo Touvron, et al. "Training data-efficient image transformers & distillation
through attention," arXiv 2021

[EX] PR12 Paper Review, Jinwon Lee, PR-297 DeiT

Distillation : Agreement with the teacher & inductive bias

Does it inherit existing inductive bias that would facilitate the
training?

Below table reports the fraction of sample classified differently for
all classifier pairs, i.e. the rate of different decisions.

The distilled model is more correlated to the convnet than a
transformer learned from scratch.

Supervision Test tokens ImageNet top-1 (%) roundtruth | M distillation  DeiT student (of the convnet)
method | label teacher | class distil. | pretrain  finetune 384 & convnet DeiT | class distillation DeiT™
DeiT- no distillation v v 81.8 83.1 groundtruth 0.000 0.171 0.182 | 0.170 0.169 0.166
DeiT- usual distillation v soft v 81.8 83.1 convnet (RegNetY) 0.171 0.000  0.133 | 0.112 0.100 0.102
DeiT- hard distillation v hard v 3.0 R4.0 DeiT 0.182 0.133 0.000 | 0.109 0.110 0.107
DeiT: class embedding v hard v 83.0 84.1 DeiT2- class only 0.170 0.112  0.109 | 0.000 0.050 0.033
DeiT#: distil. embedding | v hard v 83.1 84.2 DeiT— distil. only 0.169 0.100  0.110 | 0.050 0.000 0.019
DeiT: class+distillation v hard v v 83.4 84.2 DeiT®— class+distil. 0.166 0.102 0.107 | 0.033 0.019 0.000

Table 3: Distillation experiments on Imagenet with DeiT, 300 epochs of
pretraining. We separately report the performance when classifying with
only one of the class or distillation embeddings, and then with a classifier
taking both of them as input. In the last row (class+distillation), the result
correspond to the late fusion of the class and distillation classifiers.

Table 4: Disagreement analysis between convnet, image transformers and
distillated transformers: We report the fraction of sample classified
differently for all classifier pairs, i.e., the rate of different decisions. We
include two models without distillation (a RegNetY and DeiT-B), so that we
can compare how our distilled models and classification heads are
correlated to these teachers. 85



Hugo Touvron, et al. "Training data-efficient image transformers & distillation
through attention," arXiv 2021

DeiT (Data-efficient Image Transformers)

. Z=Xx] PR12 Paper Review, Jinwon Lee, PR-297 DeiT
Experiments = P

Distillation : Number of epochs Efficiency vs accuracy : Comparative study with convnets

86 ] - * DeiT is slightly below EfficientNet, which shows
o B;___._.___ﬂ_‘_QE.’lT_;B"'“'384 that almost closed the gap between visual

N R R J RS . :__;f_i.:kaeiT_ transformer and convnets when training with
_ et . N Imagenet only.
A O ) S + S82 h “'«_"‘\-\:\.\ <« These results are a major improvement (+6.3%
§84 /_,,,-f_ e § -+~ EfficientNet \_\';‘ - DeiT-S7 top-1 in a comparable setting) over previous ViT
5 | 7 + No distillation 5 ‘é‘T My models trained on Imagenet1k only.
o - -~ Usual distillation O 8o urs 3 ] i
Cg3f o —— Hard distillation B~ ours2 AP »  Furthermore, when DeiT benefits from the
& T g::t::::zz: t:t::: as & Bl distillation from a relatively weaker RegNetY to
“82 “78 ViT-B produce DeiT7% , it outperforms EfficientNet.

" I'n
ViT-L BO
81 400 600 800 1000 7630  so 100 200 500
epochs images/s

Figure 3: Distillation on ImageNet [42] with DeiT-B: performance as a func-
tion of the number of training epochs. We provide the performance without
distillation (horizontal dotted line) as it saturates after 400 epochs.

With 300 epochs, our distilled network DeiT-B® is already better than DeiT-
B. But while for the latter the performance saturates with longer schedules,

our distilled network clearly benefits from a longer training time. 86
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DeiT (Data-efficient Image Transformers)

. Z=Xx] PR12 Paper Review, Jinwon Lee, PR-297 DeiT
Experiments = P

Efficiency vs accuracy : Comparative study with convnets

+ Compared to EfficientNet, one can see that, for the same number of parameters, the convnet variants are much slower. This is because large
matrix multiplication offers more opportunity for hardware optimization than small convolutions.

image throughput | ImNet | Real | V2 Transformers

Network #param. | size (image/s) top-1 | top-1| top-1 VIT-B/16 [15) 8eM | 3842 85.9 77.9 83.6 .

Convnets VIT-L/16 [15) 307M | 3847 27.3 765 | 822 _
ResNet-18 [21] 12M | 224° 44584 69.8 | 77.3| 571 DeiT-Ti 5M | 224*  2536.5 722 | 801 | e0d
ResNet-50 [21] 25M | 2247 12261 762 | 82.5| €3.3 DeiT-S 22M | 224 940.4 79.8 | 857 | €85
ResNet-101 [2T) 45M | 224 753.6 774 | 837 | 657 DeiT-B 86M | 2042 2923 81.8 | 867 | 715
RegNetY-4GF [40}x 21M | 224* 11567 80.0 | sed | 694 DeiT-Ti M | 9042 25295 5 | 821 | 629
RegNetY-3GF [40]+ 39M | 2247 591.6 817 | 874 | 708 DeiT-52 oM | 9042 93 6' 2 81 '2 8 6'8 70‘0
RegNetY-16GF [40]% gdM | 224° 334.7 829 | 881| 724 De;T-B% sM | 9042 2909 a3d | 83| 732
EfficientNet-B1 [45] SM | 240° 16625 | 791 | 849 | 669 DTS/ 100 et o | 202 osga | e | srsl| mz
EfficientNet-B2 [48] oM | 260° 1255.7 80.1 | 859 | 488 e 2 ' ' ' )
EfficientNet-B3 [43] 12M | 300 7321 816 | 868 | 706 DeiTB# / 1000 epochs M 2242 2202 sz | 87| 73
EfficientNet-B4 [48] 19M | 3802 3494 829 | 830 723 DeiT-B7 1384 | &M | 384 858 | 845 | 89.0| 748
EfficientNet-B5 [48] 30M 4562 169.1 836 | 883 | 736 DeiT-B# 1384 / 1000 epochs | 87M | 3842 858 | 852 | 893 | 752
EfficientNet-Bé [48] 43M | 528 96.9 840 | 888 | 73.9

- : )

BffidentNet-B7 [£] 6eM | 600 551 843 - - Table 5: Throughput on and accuracy on Imagenet [42], Imagenet Real [5] and
EfficientNet-B5 RA 30M 4-552 96.9 83.7 - - Imagenet V2 matched frequency [41] of DeiT and of several state-of-the-art
BfticlentNet-B7 RA [12] 66M | 600 551 847 - - convnets, for models trained with no external data. The throughput is measured
KDforAA-BS | sM | 8007 252 | &8 | - | - as the number of images that we can process per second on one 16GB V100

GPU. For each model we take the largest possible batch size for the usual
resolution of the model and calculate the average time over 30 runs to process
that batch.

* : Regnet optimized with a similar optimization procedure as ours,
which boosts the results. These networks serve as teachers when
we use our distillation strategy.
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DeiT (Data-efficient Image Transformers)

Training Details & Ablation

* Discuss the DeiT training strategy to learn vision transformers in a data-efficient manner. % timm library

https://timm.fast.ai/
https://github.com/rwightman/pytorch-image-models

*  We build upon PyTorch [39] and the timm library [55]. (The timm implementation already included
a training procedure that improved the accuracy of ViT-B from 77.91% to 79.35% top-1, and
trained on Imagenet-1k with a 8xV100 GPU machine.)

Table 9: Ingredients and hyper-parameters for

Initialization & hyper-parameters our method and Vit-B.
» Transformers are relatively sensitive to initialization Methods ViT-B [15] DeiT-B
* Follow H_anlp et_al. [20] to initialize the weights with a truncated Epochs 300 300
normal distribution. Follow Cho et al. [9[] to select parameters t=3.0, Bl o 1006 Tood
_ T atch size
2=0.1 for the usual (soft) distillation. Optimizer AdamW AdamW
learning rate 0.003 0.0005 x batchsize
Learning rate decay ~ cosine cosine
o o Weight decay 0.3 0.05
» We report the accuracy scores (%) after the initial training at Warmup epochs 34 5
resolution 224x224, and after fine-tuning at resolution 384x384. The Label smoothing € X 01
hyper-parameters are fixed according to Table 9, and may be Dropout 0.1 X
suboptimal. Stoch. Depth X 0.1
Repeated Aug X v
Gradient Clip. v X
Rand Augment X 9/0.5
Mixup prob. X 0.8
Cutmix prob. X 1.0
Erasing prob. X 0.25 88
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DeiT (Data-efficient Image Transformers)

Training Details & Ablation

Ablation study
Table 8: Ablation study on training methods on ImageNet top-1 accuracy
[42]. The top row ("none”) corresponds to our default s
configuration employed for DeiT. The symbols 3 and 7 = 50 z P 3
indicates that we use and do not use the corresponding &0 50 go ;ﬁl z Ed kM =
method, respectively. We report the accuracy scores (%) é g f: 2P x| s A T 3 2 & 3
after the initial training at resolution 224x224, and after 5 T 5 3 = 2|8 = g & i 5 ?5
fine-tuning at resolution 384x384. The hyper-parameters Ablationon | | & & é 24 3l5 & & & 4 5 g
are fixed according to Table 9, and may be suboptimal. none: DeilB | adamw adamw | v X v |/ v / X X |88k 83l
* indicates that the model did not train well, possibly SGD 245 773
because hyper-parameters are not adapted. optimizer scD 818 83.1
X 79.6 80.4
S 81.2 81.9
data X 787 798
augmentation X 80.0 80.6
X X 75.8 76.7
X 4.3* 0.1
X 3.4% 0.1
regularization X 76.5 774
v 81.3 83.1
v | 819 83.1
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DeiT Pytorch

gihub

facebookresearch/deit : https://github.com/facebookresearch/deit
lucidrains/vit-pytorch : https://github.com/lucidrains/vit-pytorch
FrancescoSaverioZuppichini/DeiT : https://github.com/FrancescoSaverioZuppichini/DeiT

timm : pytorch image models

rwightman/pytorch-image-models : https://github.com/rwightman/pytorch-image-models

FrancescoSaverioZuppichini/glasses : His deep learning computer vision library
https://github.com/FrancescoSaverioZuppichini/glasses

90



* Knowledge distillation

import torch

from torch import nn

import torch.nn.functional as F
from torch import Tensor

class HardDistillationLoss(nn.Module):
def __init__ (self, teacher: nn.Module):
super().__init__()
self.teacher = teacher
self.criterion = nn.CrossEntropyLoss()

def forward(self, inputs: Tensor, outputs : Tensor, labels: Tensor) -> Tensor:

base_loss = self.criterion(outputs, labels)

with torch.no_grad():
teacher_outputs = self.teacher(inputs)

teacher_labels = torch.argmax(teacher_outputs, dim=1)
teacher_loss = self.criterion(outputs, teacher_labels)

return 0.5 * base_loss + 0.5 * teacher_loss
# little test

loss = HardDistillationLoss(nn.Linear(100, 10))
_ =loss(torch.rand((8, 100)), torch.rand((8, 10)), torch.ones(8).long())

DeiT Pytorch

[&11] FrancescoSaverioZuppichini/DeiT :
https://qgithub.com/FrancescoSaverioZuppichini/DeiT

— Modify by Attention Distillation
from typing import Union

class HardDistillationLoss(nn.Module):
def __init__(self, teacher: nn.Module):
super().__init_ ()
self.teacher = teacher
self.criterion = nn.CrossEntropyLoss()

def forward(self, inputs: Tensor, outputs: Union[Tensor, Tensor], labels: Tensor) -
> Tensor:
# outputs contains booth predictions, one with the cls token and one with the
dist token
outputs_cls, outputs_dist = outputs
base_loss = self.criterion(outputs_cls, labels)

with torch.no_grad():
teacher_outputs = self.teacher(inputs)

teacher_labels = torch.argmax(teacher_outputs, dim=1)
teacher_loss = self.criterion(outputs_dist, teacher_labels)

return 0.5 * base_loss + 0.5 * teacher_loss
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DeiT Pvtorch [&11] FrancescoSaverioZuppichini/DeiT :
https://github.com/FrancescoSaverioZuppichini/DeiT

+ Distillation token

from einops import rearrange, reduce, repeat def forward(self, x: Tensor) -> Tensor:
from einops.layers.torch import Rearrange, Reduce b, , , =xshape
x = self.projection(x)
class PatchEmbedding(nn.Module): cls_tokens = repeat(self.cls_token, '() n e -> b n €', b=b)
def __init__ (self, in_channels: int = 3, patch_size: int = 16, emb_size: int = 768, dist_tokens = repeat(self.dist_tokens, '() n e -> b n €', b=b)

img_size: int = 224): # prepend the cls token to the input

self.patch_size = patch_size x = torch.cat([cls_tokens, dist_tokens, x], dim=1)

super().__init__ () # add position embedding

self.projection = nn.Sequential( x += self.positions

# using a conv layer instead of a linear one -> performance gains return x

nn.Conv2d(in_channels, emb_size, kernel_size=patch_size,
stride=patch_size),
Rearrange('b e (h) (w) -> b (h w) €'),

self.cls_token = nn.Parameter(torch.randn(1,1, emb_size))

# distillation token
self.dist_token = nn.Parameter(torch.randn(1,1, emb_size))

self.positions = nn.Parameter(torch.randn((img_size // patch_size) **2 + 1,
emb_size))
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DeiT Pvtorch [&11] FrancescoSaverioZuppichini/DeiT :
https://github.com/FrancescoSaverioZuppichini/DeiT

Follows the ViT code

* Classification Head
class MultiHeadAttention(nn.Module):

class ClassificationHead(nn.Module): def __init__(self, emb_size: int = 768, num_heads: int = 8, dropout: float = 0):
def __init_ (self, emb_size: int = 768, n_classes: int = 1000): super().__init__()
super().__init_ () self.emb_size = emb_size
self.num_heads = num_heads
self.head = nn.Linear(emb_size, n_classes) # fuse the queries, keys and values in one matrix
self.dist_head = nn.Linear(emb_size, n_classes) self.qgkv = nn.Linear(emb_size, emb_size * 3)
self.att_drop = nn.Dropout(dropout)
def forward(self, x: Tensor) -> Tensor: self.projection = nn.Linear(emb_size, emb_size)
X, x_dist = x[:, 0], x[:, 1]
x_head = self.head(x) def forward(self, x : Tensor, mask: Tensor = None) -> Tensor:
x_dist_head = self.dist_head(x_dist) # split keys, queries and values in num_heads
gkv = rearrange(self.gkv(x), "b n (h d gkv) -> (gkv) b h n d",
if self.training: h=self.num_heads, gkv=3)
x = x_head, x_dist_head queries, keys, values = gkv[0], gkv[1], gkv[2]
else: # sum up over the last axis
x = (x_head + x_dist_head) / 2 energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys) # batch,
return x num_heads, query_len, key_len

if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)

scaling = self.emb_size ** (1/2)

att = F.softmax(energy, dim=-1) / scaling

att = self.att_drop(att)

# sum up over the third axis

out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "ohnd->bn (h d)")

out = self.projection(out)

return out



Follows the ViT code

class ResidualAdd(nn.Module):
def __init__ (self, fn):
super().__init__()
self.fn = fn

def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
X +=res
return x

class FeedForwardBlock(nn.Sequential):
def _init__(self, emb_size: int, expansion: int = 4, drop_p: float = 0.):
super().__init__(
nn.Linear(emb_size, expansion * emb_size),
nn.GELU(),
nn.Dropout(drop_p),
nn.Linear(expansion * emb_size, emb_size),

DeiT Pytorch

[&11] FrancescoSaverioZuppichini/DeiT :
https://qgithub.com/FrancescoSaverioZuppichini/DeiT

class TransformerEncoderBlock(nn.Sequential):
def __init__(self,

emb_size: int = 768,
drop_p: float = 0.,
forward_expansion: int = 4,
forward_drop_p: float = 0.,
** kwargs):

super().__init__(

ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
MultiHeadAttention(emb_size, **kwargs),
nn.Dropout(drop_p)

),

ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
FeedForwardBlock(
emb_size, expansion=forward_expansion, drop_p=forward_drop_p),
nn.Dropout(drop_p)

)
)

class TransformerEncoder(nn.Sequential):
def __init__(self, depth: int = 12, **kwargs):
super().__init__ (*[TransformerEncoderBlock(**kwargs) for _ in range(depth)])
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DeiT Pvtorch [&11] FrancescoSaverioZuppichini/DeiT :
https://github.com/FrancescoSaverioZuppichini/DeiT

DeiT model To train, we can use a bigger model (ViT-Huge, RegNetY-16GF ... ) as
teacher and a smaller one (ViT-Small/Base) as student. The training
class DeiT(nn.Sequential): code looks like this:
def __init_ (self,
in_channels: int = 3, https://qithub.com/facebookresearch/deit

patch_size: int = 16,

emb_size: int = 768,

img_size: int = 224,

depth: int =12,

n_classes: int = 1000,

**kwargs):

super().__init__(

PatchEmbedding(in_channels, patch_size, emb_size, img_size),
TransformerEncoder(depth, emb_size=emb_size, **kwargs),
ClassificationHead(emb_size, n_classes)

)

ds = ImageDataset('./imagenet/')
dl = DataLoader(ds, ...)

teacher = ViT.vit_large_patch16_224()
student = DeiT.deit_small_patch16_224()

optimizer = Adam(student.parameters())
criterion = HardDistillationLoss(teacher)

for data in dI:
inputs, labels = data
outputs = student(inputs)
optimizer.zero_grad()

loss = criterion(inputs, outputs, labels)

loss.backward()
optimizer.step()
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